
Physical State Exploration for Reinforcement Learning from Scratch

Allison Pinosky, Thomas A. Berrueta, Olivia Li, and Todd D. Murphey

Abstract— Although reinforcement learning (RL) algorithms
have demonstrated impressive capabilities in simulation, their
transition into the real-world often reveals a performance
gap. A key challenge of real-world deployment is ensuring
robustness to complex or unmodeled physical phenomena, such
as anisotropic friction during locomotion. This discrepancy
between simulated and real-world performance underscores
the need for hardware benchmarks to rigorously evaluate
and improve RL algorithms for physical deployment. In this
work, we present NoodleBot—a low-cost, untethered three-
link swimmer robot—as a hardware benchmark for RL algo-
rithms. This benchmark is intended to complement embodied
learning approaches, where simulations provide confidence
that algorithms are able to learn from scratch in challenging
environments. We demonstrate three algorithms learning on
the platform and compare the results to learning with a
simulated swimmer, highlighting the importance of effective
state exploration to agent performance. We also show the ability
of one algorithm to learn in single-shot hardware deployments.
Design, firmware, and software are available open source at
https://github.com/MurpheyLab/NoodleBot.

Index Terms— Deep Learning in Robotics and Automation,
Reinforcement, Machine Learning

I. INTRODUCTION

Reinforcement learning (RL) agents learn to solve tasks
by exhaustively sampling data through sequential interac-
tions with their environment. The unsupervised, trial-and-
error nature of RL makes it a promising approach to solve
complex real-world tasks with minimal human intervention.
However, the success of most RL agents has been limited
to simulated environments [1], where high-quality data can
be sampled across massively parallelized instances of a task
in simulation. For this reason, widespread adoption of RL
methods in the real-world has been limited, with a recent
survey citing sample efficiency, safety, interpretability, and
hardware validation of these techniques as key outstanding
roadblocks [2]. In the real-world, RL agents must gather
experience through embodied interactions with their environ-
ment. This introduces additional challenges and constraints
that are difficult to reproduce in simulation and can have a
negative impact on the learning process. Importantly, since
sampling data during real-world deployment takes time,
learning some tasks can be costly and time consuming [3]—
leading practitioners to consider alternative techniques.

Two common algorithmic approaches to address the chal-
lenges of real-world data collection include learning from
demonstrations [4]–[7] and sim-to-real transfer [8]–[11].

Authors are with the Department of Mechanical Engineering,
Northwestern University, Chicago, IL, USA. Contact: {apinosky,
tberrueta, oliviali2026}@u.northwestern.edu,
t-murphey@northwestern.edu.

 Transfer Learning

Embodied Learning
Algorithm

Fine Tuning Hardware Policy

Simulation

Hardware

c
ILFS

c
ILP

Fig. 1. Simulations Build Confidence. Transfer learning (green) assumes
simulations closely mimic the real-world, and confidence in the learned
policy (cILP) directly provides confidence to fine-tune in hardware. With
embodied learning (purple), simulations stress the algorithm’s ability to
learn in challenging environments, and confidence in learning from scratch
(cILFS) provides confidence to directly learn hardware policies.

However, the success of these methods depends on the
quality of the demonstrations and simulators respectively.
Moreover, simulators often incur expensive computational
costs—especially when the task involves complex physical
phenomena, such as granular media [12] and anisotropic
frictional interfaces [13]—and even the most sophisticated
simulators fail to capture the richness of real-world physics
beyond the most trivial environments. As a result, sim-to-
real transfer agents still experience a degradation in policy
performance referred to as the “reality gap” [14]. Therefore,
there is a need for embodied RL algorithms capable of
directly adapting to and navigating the complexities of real-
world environments. As shown in Fig. 1, simulation still has
a role to play in embodied learning. However, the primary
role of simulation is to build confidence that embodied al-
gorithms are capable of learning from scratch in challenging
environments.

To mitigate the cost of real-world data collection, re-
searchers have sought to develop sample efficient RL algo-
rithms by promoting exploration during learning [15]. Of
the many exploration approaches that have shown promise
(e.g., [16]–[18]), those based on the principle of maximum
entropy (MaxEnt) have attained state-of-the-art performance
across simulated robotics benchmarks by maximizing policy
entropy as a means of promoting sample efficiency and effec-
tive exploration [19], [20]. Other researchers have extended
these methods to incorporate neural model ensembles during
hardware learning, leveraging access to additional compute
to improve sample efficiency [21]. However, recent work in
maximum diffusion (MaxDiff) RL has illustrated that policy
entropy maximization can be an insufficient proxy for state
exploration in some tasks [22]. A limitation of many RL

Submitted to IEEE 21st International Conference on Automation Science and Engineering (CASE 2025). Preprint version.

https://github.com/MurpheyLab/NoodleBot

algorithms—including MaxEnt approaches—is that training
is highly sensitive to initialization and algorithms exhibit
varied performance across agent experiences. In contrast,
MaxDiff has been shown to outperform MaxEnt techniques
across several simulated robotics benchmarks by optimizing
state transition entropy, highlighting the importance of effec-
tive state exploration on performance, sample efficiency, and
robustness.

Despite the advances in sample efficient RL approaches,
very few methods are ultimately validated in hardware [2].
Part of the reason for this is the lack of standardized, cost-
effective, hardware robotics benchmarks similar to the Mu-
JoCo task suite [23]. To this end, there is a pressing need for
the development of hardware robotic benchmarks to evaluate
and improve RL algorithms under realistic conditions. Real-
world deployment of RL has been hindered by the large gap
between simulated benchmarks and practical applications,
but hardware benchmarks provide a path to close this gap.
Prior work on RL hardware benchmarks have largely focused
on manipulation [24]–[28] and legged locomotion [28]–[30].
One downside to many of these approaches is that they
rely on expensive robot hardware. Even encouraging recent
work on the lower-cost end (e.g., [27], [28]) still cost
upwards of $3.5k in component costs, so there is still a need
for standardized, low-cost, open-source, hardware learning
benchmarks in RL. Furthermore, these hardware benchmarks
minimize contact area by design to simplify the learning
problem, but many real-world tasks we ultimately want to
solve require prolonged interaction with the environment.

In this work, we introduce NoodleBot—a 3-link “swim-
mer” robot (see [31]) designed to serve as a low-cost
hardware benchmark for advancing the development of RL
algorithms in physical environments (see Fig. 2). In contrast
to prior swimmer platforms, the design of NoodleBot is not
based on principles like bioinspiration [32]–[34] or modu-
larity [35], [36]. Instead, we aim to present a simple, open-
source design that captures many of the complexities inherent
to physical systems for approximately $100. Moreover, due
to the intrinsic stability of planar swimmer locomotion,
NoodleBot presents a compelling platform for tasks requiring
long planning horizons.

The contributions of this work can be summarized as
follows:

• We introduce the design of a hardware swimmer bench-
mark for RL.

• We show that state exploration improves task perfor-
mance both in simulation and in hardware.

• We demonstrate the ability of one algorithm to au-
tonomously learn in single-shot hardware deployments.

The paper is organized as follows. Section II provides
background on the tested RL algorithms. Section III presents
the robot design. Results from simulations and real-world ex-
periments are presented in Section IV, and finally Section V
provides conclusions.

II. REINFORCEMENT LEARNING APPROACH

In this work, we benchmark the performance of three deep
RL algorithms in hardware. Two of the algorithms belong
to the MaxEnt RL family of techniques, which decorrelate
an agent’s action sequences by adding policy entropy to the
rewards in the following objective,

argmax
π

E(st,at)∼p,π

[
T∑

t=1

r(st, at) + αHπ[at|st]
]
, (1)

where π is the policy, s is the robot state, a is the robot
action, Hπ[at|st] denotes the entropy of the policy con-
ditioned on the current state, r is the predicted reward,
and α is a temperature parameter. We use Soft Actor-Critic
(SAC) [19] to train a model-free MaxEnt policy, and we use
Model-Predictive Path Integral Control (NN-MPPI) [20] as
our model-based MaxEnt planner.

The third algorithm we evaluate is MaxDiff RL [22]. In
prior work, we showed that MaxDiff RL achieves explo-
ration through decorrelating agent experiences (i.e., explored
states). Here, we use a model-based MaxDiff RL formu-
lation, which replaces Hπ[at|st] from Eq. 1 with a state-
transition based entropy term

Sπ[st] =
1

2
log detCπ[st], (2)

where Cπ[st] is the trajectory autocovariance for policy π.
In other words, MaxEnt RL explores the controls (indirectly
exploring the states), while MaxDiff explores the states di-
rectly. Direct state exploration enables MaxDiff to learn from
scratch in single-shot scenarios, which are more challenging
than the classic episodic RL formulation.

One challenge with real-world deployment of MaxDiff
is the tuning of α, which effectively controls the balance
between state exploration and task exploitation. Since re-
ward functions can depend on task length-scales and robot
parameters, α values can vary from task to task and system to
system, which is undesirable. To ensure that our exploration
term varies on the same scale as our rewards, in this work
we define our temperature parameter as

α = α0
σr

σS
= E(st,at)∼p,π

[
α0

√
V ar(r(st, at))

V ar(Sπ[st])

]
, (3)

which effectively scales the strength of MaxDiff exploration
relative to sampled rewards. By accounting for task and
system-dependent scale variations, we are then able to use
α0 as a fixed hyperparameter to tune exploration in a more
generalizable manner. In practice, we compute α as

α̂(T) =
α0

N

N∑
n=1

√√√√∑T
t=1 |r(s

(n)
t , a

(n)
t)− r̄t|2∑T

t=1 |Sπ[s
(n)
t]− S̄t|2

, (4)

where N is the number of sample paths, (n) indexes across
sample paths, T is the planning horizon, Sπ is the trajectory
entropy from Eq. 2, r is the predicted reward, and at each
point in time their sample averages across sample paths are

Submitted to IEEE 21st International Conference on Automation Science and Engineering (CASE 2025). Preprint version.

given by r̄t and S̄t, which we calculate empirically. Addi-
tionally, by explicitly modeling the temperature parameter as
a function of planning horizon T , we are able to adapt our
temperature parameter in real-time across rolling windows,
effectively introducing an annealing schedule that improves
long horizon learning performance.

Implementation: For model-free algorithms (i.e., SAC), the
policy is represented by a normal distribution parameterized
by a mean function defined as a fully-connected neural
network. For model-based algorithms (i.e., MaxDiff and NN-
MPPI), the state-transition function f(st, at) and reward
function r(st, at) are both modeled by fully-connected neural
network representations. The state-transition network is reg-
ularized using the negative log-loss of a normal distribution
where the variance, Σmodel ∈ Rn×n, is a hyperparameter that
is simultaneously learned based on agent experience. Table I
provides an overview of relevant RL hyperparameters.

SAC [19] NN-MPPI [20] MaxDiff [22]

Target Smoothing Coeffi. 0.01 N/A N/A
Discount Factor 0.99 0.95 0.95
Reward Scale (S/H) 500 / 10 1 / 1 1 / 1
Planning Horizon (S/H) N/A 30 / 20 30 / 20
Planning Samples N/A 1000 1000
Planning Inverse Temp. N/A 0.1 0.1
Planning Control Noise N/A N (0, 0.5) N (0, 0.5)
Diffusion Dimensions N/A N/A [x, y, ẋ, ẏ]
Diffusion Weights N/A N/A [1, 1, 0.05, 0.05]
Diffusion Temp. α0 (S/H) N/A N/A 0.1 / 0.5
MLP Hidden Layers 200× 200 (ReLU Activation)
MLP Final Layer Weights U(−0.03, 0.03)
Learning Rate 0.0003 (Adam Optimizer [37])
Batch Size 128 (5 updates per control step)

TABLE I. Learning Hyperparmeters. Any differences between simula-
tion (S) and hardware (H) are noted above. Any hyperparameters not listed
are the same as those in the original papers.

III. ROBOT DESIGN

Our hardware swimmer—NoodleBot—is designed to
mimic the Gym MuJoCo 3-link swimmer [23]. The goal of
the swimming task is to maximize positive x-velocity in a
planar environment. The robot state is

s = [x, y, sin(θ), cos(θ), ϕ1, ϕ2, vx, vy, ωθ, ωϕ1, ωϕ2],

where the elements are the 2D robot position, linearized
robot angle, joint angles, robot velocity, and joint angular
velocities. The robot actions are joint torques a = [τ1, τ2].
The reward function is

r(st, at) =
xt − xt−1

dt
− 0.0001∥at∥2, (5)

where a are actions provided to the robot, s are robot states,
x is the position of the robot in the world frame, ∥ · ∥ is the
L2 norm, t is a time index, and dt is the time step.

Although both the simulated and hardware swimmers learn
the same reward function, their environments pose substan-

Fig. 2. 3-Link Swimmer Hardware. A top-down view of NoodleBot (left).
The inset (right) shows the electronic components housed inside the middle
joint. The total cost of the swimmer is approximately $100 excluding the
cost of the Indoor Positioning System (IPS). Models of the 3D printed parts,
firmware, and assembly instructions are available at https://github.
com/MurpheyLab/NoodleBot.

tially different challenges.1 The simulated swimmer operates
a highly viscous media without ground contact forces, while
the hardware swimmer may encounter noisy sensors, im-
passable boundaries, unknown friction coefficients, stick-slip
phenomena, degrading actuators, communication dropouts,
as well as other real-world conditions that complicate the
task. The differences in actuation and drag profiles lead to
swimming gaits and policies that differ substantially between
simulation and hardware—so much so that zero-shot policy
transfer is not a viable strategy. However, the simulation
experiments provide valuable information about the expected
performance of each algorithm in hardware.

A. Hardware

NoodleBot is comprised of three lightweight links with
motorized hinge joints as shown in Fig. 2. The links are
constructed using a pool noodle with slots cut out to accom-
modate batteries and electronics. The links are connected by
custom-made hinged motor brackets 3D printed via fused
deposition modeling (FDM), and the ends are constrained
by 3D printed FDM end caps. The bottom edge of each 3D
printed part is made flat (as opposed to circular) to ensure
good contact with the floor without rolling, and felt pads are
attached to the flat portions to control friction. Standard 180◦

hobby servo motors (TowerPro SG-5010) provide actuation.

1A side-by-side comparison of differences between the original simulated
MuJoCo swimmer and our hardware swimmer is included in the GitHub
repository https://github.com/MurpheyLab/NoodleBot.

Submitted to IEEE 21st International Conference on Automation Science and Engineering (CASE 2025). Preprint version.

https://github.com/MurpheyLab/NoodleBot
https://github.com/MurpheyLab/NoodleBot
https://github.com/MurpheyLab/NoodleBot

0

100

200

ep
is

od
e

re
w

ar
d

Multi-shot Simulation

0

10

20

30

Multi-shot Hardware

0 10 20
episode

0

100

200

m
ax

ep
is

od
e

re
w

ar
d

SAC NN-MPPI MaxDiff

0 10 20
episode

0

10

20

30

Fig. 3. Multi-shot Learning Rewards. Each column shows results from
the same tests–with 5 seeds tested per method. The top row shows the
raw episode rewards, and the bottom row shows the cumulative maximum
reward achieved by each seed. For all plots, the solid line is the mean across
seeds, and the shaded region is the standard deviation. The raw results show
that MaxDiff outperforms SAC and NN-MPPI across all episodes in both
simulation and hardware. The max reward results show that all MaxDiff
seeds learn the task within 25 episodes, while there is large variance in the
performance of SAC and NN-MPPI seeds.

B. Firmware

Low-level robot control is handled on-board by a Teensy
microcontroller with a ESP8266 WiFi module attached,
where standard commercial battery packs provide USB
power (5V, 3A) to the motors, microcontroller, and WiFi
module. The Robot Operating System (ROS) is used to
communicate states and actions over WiFi between the robot
and an external laptop where model updates are performed.

The Marvelmind Indoor Positioning System (IPS) provides
robot state information.2 Test area dimensions and IPS
update rates are listed in Table II. Alternate methods of
generating state information are possible (e.g., April Tags),
but adjustments to the robot firmware may be required.

Experiments Test Area Dimensions (x× y) IPS Update Rate
Multi-shot 3.4m × 1.8m 13.7 Hz
Single-shot 7.0m × 4.6m 11.4 Hz

TABLE II. Indoor Positioning Test Parameters. The centralized modem
publishes the state information for the mobile beacons, so the larger the test
area, the slower the IPS update rate.

IV. EXPERIMENTS

In this work, we benchmark the performance of three deep
RL algorithms on both simulated and hardware tasks. We
take the embodied learning approach from Fig. 1, where
simulations build confidence that algorithms are ready to

2To use the IPS, four stationary beacons are placed around the test
environment with line-of-sight to the robot. The two mobile beacons on the
robot provide 2D state and rotation information via radio communication
with a centralized modem. For these tests, we use firmware v7.900 for
Super-Beacon-2 and Modem HW v5.1-2 with non-inverse architecture.

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0

100

200

ep
is

od
e

re
w

ar
d

Multi-shot Simulation

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0

10

20

30

Multi-shot Hardware

SAC
NN-MPPI

MaxDiff SAC
NN-MPPI

MaxDiff
seed: seed:

Fig. 4. Multi-shot Evaluation Rewards. Each learned multi-shot model
was evaluated on 5 episodes. The hexagons are the raw data for each
episode. The error bars show the mean and standard deviation for each
method. These plots show that in simulation, all MaxDiff seeds receive a
high reward, regardless of the initialization. In hardware, MaxDiff outper-
forms SAC and NN-MPPI on average. As expected, the results are much
noisier than the simulation. The hardware swimmer has to contend with
noisy sensors, physical boundaries, and changes in performance over time
due to wear on the system.

test in hardware. Thus, the simulated results are primarily
included to illustrate the repeatability that we expect from RL
algorithms. All RL algorithms are executed on an Intel® i7
CPU @ 2.60GHz x 12 laptop with an Nvidia® GeForce
GTX 1650 Max-Q GPU. The laptop has Ubuntu 20.04, ROS
Melodic, and Python 3.8 (PyTorch 1.11). Each algorithm
was trained with 5 different seeds (random neural network
initializations).

Typically, RL agents learn across many episodic deploy-
ments of an agent, which we refer to as multi-shot learning.
However, in hardware systems, conditions can drift and
evolve over time. Ultimately, we want agents to be able to
autonomously learn from scratch and adapt to environmental
changes. Therefore, we also test RL agents in single-shot
learning scenarios, which require the agent to learn through-
out a single, continuous task attempt [22].

A. Multi-shot

For the multi-shot tests, each algorithm was trained for 25
episodes of 1000 steps each. At the end of each episode, the
model-based policies are reset, and the robot is physically
moved to random joint angles at the same initial position
in the world frame. Simulated tests take ∼20 minutes, and
hardware tests take ∼1 hour. Fig. 3 shows a side-by-side
comparison of the episodic reward across training episodes
of the simulated and hardware swimmers. The plots show
that MaxDiff outperforms NN-MPPI and SAC in simula-
tion. Furthermore, the algorithms perform similarly in both
hardware and simulation.

After training, we evaluate each final policy 5 times. The
episode rewards are shown in Fig. 4. The simulated results
show that all MaxDiff evaluations successfully solved the
task. The hardware results show more variance than the
simulated results, as expected. MaxDiff still outperforms
SAC and NN-MPPI on average, but additional temperature
tuning may be required to achieve optimal performance. An
important note is that all policy evaluations were performed
after the training procedures of each algorithm. As a result, it

Submitted to IEEE 21st International Conference on Automation Science and Engineering (CASE 2025). Preprint version.

SAC

NN-M
PPI

MaxDiff

Evaluation

seed 1

seed 2

seed 3

seed 4

seed 5

mean

± std

SAC

NN-M
PPI

MaxDiff

Evaluation

seed 1

−5

0

5
S

A
C y

−5

0

5

N
N

-M
P

P
I

y

0 10
x

−5

0

5

M
ax

D
iff

y

seed 2

0 10
x

seed 3

Multi-shot Simulation

0 10
x

seed 4

0 10
x

seed 5

0 10
x

seed 1

−1

0

1

S
A

C y

−1

0

1

N
N

-M
P

P
I

y

0 2
x

−1

0

1

M
ax

D
iff

y

seed 2

0 2
x

seed 3

Multi-shot Hardware

0 2
x

seed 4

0 2
x

seed 5

0 2
x

SAC

NN-M
PPI

MaxDiff
0

2

4

6

8

10

m
ax

x

Training

SAC

NN-M
PPI

MaxDiff
0.0

0.5

1.0

1.5

2.0

2.5

m
ax

x

Training

Fig. 5. Multi-shot Paths. The grids on the left show all training paths by seed and training algorithm. The plots on the right summarize the maximum
x reached by each seed during training and evaluation. The paths show that all MaxDiff methods spread out more than SAC and NN-MPPI paths in both
simulation and hardware. The results show that all MaxDiff seeds reach the same distance, regardless of the initialization, while there is large variance in
the maximum distance reached by different SAC and NN-MPPI initializations. See video supplement for demonstrations of learned swimming policies.

is likely that the NoodleBot may have experienced actuator
degradation between the training and evaluation procedures,
which potentially explains the increase in variance. However,
since hardware degradation is an unavoidable feature of real-
world robot operation, these results show that NoodleBot is
a good candidate for a hardware RL benchmarking.

To illustrate how RL policy performance relates to the data
collected, we also show agent sample paths for all training
episodes on the left side of Fig. 5. These paths indicate that
when SAC and NN-MPPI collect diverse data, they are able
to solve the task, but many seeds fail to explore very far
beyond the initial position. MaxDiff, which is designed to
directly encourage state exploration, covers a much larger
portion of the environment for all seeds in both software and
hardware. As a result, MaxDiff attains better, more reliable
performance across seeds, underscoring the importance of
effective state exploration in RL.

Since the task is to maximize +x velocity, the right section
of Fig. 5 summarizes the maximum x position achieved by

each seed. These results again illustrate the impact of state
exploration on task performance. The best performing SAC
seeds (2 in simulation and 1 in hardware) are those which
achieve the greatest state coverage during training. Further-
more, the results show that MaxDiff achieves similar max
x positions across seeds. Thus, the empirical robustness of
MaxDiff across random seeds in both software and hardware
tests suggests that MaxDiff presents a promising approach to
reliable RL in the real-world.

B. Single-shot
For single-shot tests, the robot is initialized once and is

then required to learn continuously. The results are shown in
Fig. 6. For simulated tests, we allow the robot to learn for
25,000 control steps. In hardware, we are limited by the size
of our test area, so we allow the robot to learn until it reaches
the maximum +x position in the test workspace. To enable
comparisons to multi-shot tests, we accumulate the rewards
over each 1000 control steps into a “windowed reward”.
We test all three algorithms on the single-shot simulated

Submitted to IEEE 21st International Conference on Automation Science and Engineering (CASE 2025). Preprint version.

0 100
−50

0

50

y
SAC

0 10
x

−10

0

y

0 100

NN-MPPI

0 10
x

0 100

MaxDiff

0 10
x

2 4 6
x

−1

0

1

y

Single-shot Hardware (MaxDiff)

0k 10k 20k
steps

0

100

200

w
in

d
ow

ed
re

w
ar

d

Single-shot Simulation

SAC

NN-MPPI

MaxDiff

0k 2k 5k 8k
steps

0

10

20

Single-shot Hardware

Single-shot Simulation

Fig. 6. Single-shot Paths. In the first three rows, each color is a different
seed. The top row shows that only MaxDiff is able to learn in single-
shot deployments. The middle plot shows that MaxDiff was also able to
learn in single-shot hardware deployments. The bottom row show windowed
rewards, where each window is 1000 control steps. In the bottom row,
the solid line is the mean across seeds, and the shaded region is the
standard deviation. The results show that MaxDiff is able to learn the task
in single-shot hardware and software deployments. See video supplement
for demonstrations of single-shot hardware learning.

swimmer, but only MaxDiff was capable of learning a
successful locomotion policy. Therefore, we only tested the
single-shot hardware swimmer with MaxDiff. The results in
Fig. 6 show that MaxDiff is able to learn the task both in
simulation and in hardware.

V. DISCUSSION

This work introduces NoodleBot as an open-source, low-
cost 3-link swimmer robot platform designed to facilitate
hardware experimentation in RL and to encourage the de-
velopment of RL algorithms that directly grapple with the
challenges of real-world operation. Real-world deployment
of RL has been hindered by the large gap between simu-
lated benchmarks and practical applications, but hardware
benchmarks like NoodleBot provide a path to close this gap
and build confidence that embodied RL algorithms can learn
from scratch. We demonstrate the performance of three RL
algorithms on this benchmark, providing baseline results for
future comparisons and extensions. Moreover, our results
highlight the importance of effective state exploration and
data quality to the performance of RL agents.

The flexibility of our platform also enables future work to
explore various aspects of autonomous robot learning, such
as comparing the performance of learning algorithms across
different body morphologies (e.g., limb masses and lengths),
testing in diverse environmental conditions (e.g., different
surfaces and interfacial physics), as well as assessing and
adapting to robot wear and tear (e.g., actuator degradation
and communication dropouts). The platform’s potential can
be further expanded by incorporating low-cost sensors, such
as cameras, to enable research in additional RL domains.

Beyond its research contributions, NoodleBot’s afford-
ability and open-source nature position it as a potentially
valuable educational tool. Its accessible design and straight-
forward construction process can empower students and hob-
byists to engage directly with the challenges and intricacies
of real-world RL, similar to platforms like Duckietown [38].
By providing a tangible platform for implementing and
testing RL algorithms, NoodleBot hopes to bridge the gap
between theoretical understanding, simulation performance,
and practical application, fostering a deeper appreciation for
the complexities of embodied learning. As such, our work
presents an avenue for researchers and the broader com-
munity alike to explore the frontiers of intelligent, adaptive
systems in the real-world.

ACKNOWLEDGMENT
This material is supported by Army Research Office Grant
W911NF-22-1-0286. T.A.B. is partially supported by the North-
western University Presidential Fellowship. Any opinions, findings
and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
aforementioned institutions.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp.
529–533, 2015.

[2] A. Farooq and K. Iqbal, “A survey of reinforcement learning for
optimization in automation,” in IEEE International Conference on
Automation Science and Engineering (CASE), 2024, pp. 2487–2494.

[3] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine,
“How to train your robot with deep reinforcement learning: lessons
we have learned,” International Journal of Robotics Research, vol. 40,
no. 4, pp. 698–721, 2021.

[4] J. Langaa and C. Sloth, “Expert initialized reinforcement learning with
application to robotic assembly,” in IEEE International Conference on
Automation Science and Engineering (CASE), 2022, pp. 1405–1410.

[5] X. Sun, J. Li, A. V. Kovalenko, W. Feng, and Y. Ou, “Integrating
reinforcement learning and learning from demonstrations to learn non-
prehensile manipulation,” IEEE Transactions on Automation Science
and Engineering, vol. 20, no. 3, pp. 1735–1744, 2023.

[6] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” in Robotics:
Science and Systems, 2018.

[7] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay
policy learning: Solving long-horizon tasks via imitation and reinforce-
ment learning,” in Conference on Robot Learning (CoRL), 2020, pp.
1025–1037.

[8] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer
in deep reinforcement learning for robotics: a survey,” in IEEE
Symposium Series on Computational Intelligence, 2020, pp. 737–744.

[9] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine, “Legged
robots that keep on learning: Fine-tuning locomotion policies in the
real world,” in International Conference on Learning Representations
(ICLR), 2022, pp. 1593–1599.

Submitted to IEEE 21st International Conference on Automation Science and Engineering (CASE 2025). Preprint version.

[10] H. R. Walke, J. H. Yang, A. Yu, A. Kumar, J. Orbik, A. Singh, and
S. Levine, “Don’t start from scratch: Leveraging prior data to automate
robotic reinforcement learning,” in Conference on Robot Learning
(CoRL), 2022.

[11] N. Mu, X. Hu, Q.-S. Jia, X. Zhu, and X. He, “Large-scale data center
cooling control via sample-efficient reinforcement learning,” in IEEE
International Conference on Automation Science and Engineering
(CASE), 2024, pp. 2780–2785.

[12] C. Li, T. Zhang, and D. I. Goldman, “A terradynamics of legged
locomotion on granular media,” Science, vol. 339, no. 6126, pp. 1408–
1412, 2013.

[13] D. Ma and A. Rodriguez, “Friction variability in planar pushing data:
Anisotropic friction and data-collection bias,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3232–3239, 2018.

[14] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” in IEEE
International Conference on Robotics and Automation (ICRA), 2018.

[15] S. Amin, M. Gomrokchi, H. Satija, H. van Hoof, and D. Precup, “A
survey of exploration methods in reinforcement learning,” arXiv, 2021.

[16] A. A. Taiga, W. Fedus, M. C. Machado, A. Courville, and M. G. Belle-
mare, “On bonus based exploration methods in the arcade learning en-
vironment,” in International Conference on Learning Representations
(ICLR), 2020.

[17] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in International Conference
on Machine Learning (ICML), 2017, pp. 2778–2787.

[18] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. Xi Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, “# exploration: A study of
count-based exploration for deep reinforcement learning,” in Advances
in Neural Information Processing Systems, vol. 30, 2017.

[19] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning (ICML),
2018.

[20] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots,
and E. A. Theodorou, “Information theoretic MPC for model-based
reinforcement learning,” in IEEE International Conference on Robotics
and Automation (ICRA), 2017.

[21] X. Huang, X. Wang, Y. Zhao, J. Hu, H. Li, and Z. Jiang, “Guided
model-based policy search method for fast motor learning of robots
with learned dynamics,” IEEE Transactions on Automation Science
and Engineering, vol. 22, pp. 453–465, 2025.

[22] T. A. Berrueta, A. Pinosky, and T. D. Murphey, “Maximum diffusion
reinforcement learning,” Nature Machine Intelligence, vol. 6, no. 5,
pp. 504–514, 2024.

[23] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for
model-based control,” in IEEE International Conference on Intelligent
Robots and Systems (IROS), 2012.

[24] J. Leitner, A. W. Tow, N. Sünderhauf, et al., “The ACRV picking
benchmark: A robotic shelf picking benchmark to foster reproducible

research,” in IEEE International Conference on Robotics and Automa-
tion (ICRA), 2017.

[25] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra,
“Benchmarking reinforcement learning algorithms on real-world
robots,” in Conference on Robot Learning (CoRL), 2018.

[26] N. Gürtler, S. Blaes, P. Kolev, F. Widmaier, M. Wuthrich, S. Bauer,
B. Schölkopf, and G. Martius, “Benchmarking offline reinforcement
learning on real-robot hardware,” in International Conference on
Learning Representations (ICLR), 2023.

[27] B. Yang, D. Jayaraman, J. Zhang, and S. Levine, “REPLAB: A
reproducible low-cost arm benchmark for robotic learning,” in IEEE
International Conference on Robotics and Automation (ICRA), 2019.

[28] M. Ahn, H. Zhu, K. Hartikainen, H. Ponte, A. Gupta, S. Levine, and
V. Kumar, “Robel: Robotics benchmarks for learning with low-cost
robots,” in Conference on Robot Learning (CoRL), 2019.

[29] H. Zhang, S. Yang, and D. Wang, “A real-world quadrupedal locomo-
tion benchmark for offline reinforcement learning,” in International
Joint Conference on Neural Networks (IJCNN), 2024.

[30] W. Yu, K. Caluwaerts, A. Iscen, et al., “The design of the barkour
benchmark for robot agility,” in IEEE International Conference on
Intelligent Robots and Systems (IROS), 2024, pp. 6818–6825.

[31] E. M. Purcell, “Life at low Reynolds number,” American Journal of
Physics, vol. 45, no. 1, pp. 3–11, 1977.

[32] B. J. Van Stratum, M. P. Austin, K. Shoele, and J. E. Clark, “Compar-
ative model evaluation with a symmetric three-link swimming robot,”
in IEEE International Conference on Intelligent Robots and Systems
(IROS), 2022.

[33] R. Hall, G. Espinosa, S.-S. Chiang, and C. D. Onal, “Design and
testing of a multi-module, tetherless, soft robotic eel,” in IEEE
International Conference on Robotics and Automation (ICRA), 2024.

[34] S. J. A. Raza, A. Dastider, and M. Lin, “Developmentally synthesizing
earthworm-like locomotion gaits with Bayesian-augmented deep deter-
ministic policy gradients (DDPG),” in IEEE International Conference
on Automation Science and Engineering (CASE), 2020, pp. 1122–
1128.

[35] S. Hirose and A. Morishima, “Design and control of a mobile robot
with an articulated body,” International Journal of Robotics Research,
vol. 9, no. 2, pp. 99–114, 1990.

[36] C. Wright, A. Johnson, A. Peck, Z. McCord, A. Naaktgeboren, P. Gi-
anfortoni, M. Gonzalez-Rivero, R. Hatton, and H. Choset, “Design of a
modular snake robot,” in IEEE International Conference on Intelligent
Robots and Systems (IROS), 2007.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv, 2014.

[38] L. Paull, J. Tani, H. Ahn, et al., “Duckietown: An open, inexpensive
and flexible platform for autonomy education and research,” in IEEE
International Conference on Robotics and Automation (ICRA), 2017.

Submitted to IEEE 21st International Conference on Automation Science and Engineering (CASE 2025). Preprint version.

	Introduction
	Reinforcement Learning Approach
	Robot Design
	Hardware
	Firmware

	Experiments
	Multi-shot
	Single-shot

	Discussion
	References

